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Time-dependent Aharonov-Bohm scattering 

M Jursa and P Kasperkovitz 
lnstitut f i r  l’heoretische Physik, 2chnische Universitat Wiedner Haupfslr. 8-10, A-1040 
Wien, Austria 

Received 1 September 1992 ,in iinal lonu 7 December 1992 

Abstract Scattering of Gaussian wavepackets by impenetrable solenoids is studied using 
both analytical and numerical methods. A formula for the asymptotic (t i M) angular 
distribution of the a l t ered  packel is derived and used U1 discuss the physical meaning 
of cross sections, the optical theorem, and lhe classical limit. Angular distributions 
obtained from this formula are found w be in good agreement with angular distributions 
calculated from numerical solutions of the Schmdinger equation. 

1. Introduction 

One of the differences between classical and quantum mechanics is the fact that in one 
case the motion of charged particles depends on the electromagnetic fields whereas in 
the other case it is the electromagnetic potentials that occur in the evolution equation. 
This difference entails striking effects, especially in multiply connected regions where 
the magnetic field vanishes, whereas the magnetic flux in the excluded region is 
different from zero. In this case the classical motion of a charged particle would be 
that of a free particle, except for reflections at the walls which separate the multiply 
connected region from the magnetic flux. In 1959 Aharonov and Bohm (AB) proposed 
an interference experiment [I] where an electron beam is split into two parts which 
pass an infinite solenoid on opposite sides and are united behind the solenoid; the 
intensity at this point was predicted to be a periodic function of the magnetic flux 
enclosed by the solenoid. lb pursue their arguments AB also discussed the scattering 
of an electron by an impenetrable solenoid of infinite length. AB assumed the radius 
of the solenoid to be vanishingly small (‘magnetic flux line’) but it was later shown 
that the effect exists also for finite radius. In [l] and most of the following papers 
on this problem AB scattering was discussed in terms of time-independent scattering 
theory 0 as it is familiar from ordinary potential scattering. 

In this paper the two-dimensional AB scattering problem is discussed in terms of 
time-dependent scattering theory ~ D S T ) .  On a formal level this theory relates the 
evolution of scattered particles to that of free particles; it proves the existence of the 
Mdler wave operators and the S-matrix, from which the scattering amplitude and 
the cross section can be obtained [2]. Our approach is more elementary: we study the 
scattering of wavepackets by impenetrable solenoids using analytical approximations 
and compare for a number of examples the resulting asymptotic angular distribution 
with that obtained from numerical integration of the timedependent SchrBdinger 
equation. Though calculations in mST are more extensive than in TlsT the results of 
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TDST have the advantage of allowing direct interpretation according to the general 
rules of quantum mechanics (only square-integrable wavefunctions are considered) 
and of being free of apparent paradoxes (diverging cross sections). In our analytical 
calculations the generalized eigenfunctions calculated in TIST appear only as auxiliary 
mathematical objects without any physical interpretation. The usual conclusions drawn 
from these functions, based on the splitting into a free and a scattered wave, cover 
only one aspect of the problem, namely the scattering off the coil in directions that 
deviate from the velocity of the incoming particles. This splitting has to be avoided 
if one is interested in the interference pattern behind the solenoid, the phenomenon 
usually associated with the AB effect Whereas different techniques are needed in m s ~  
to describe these two aspects of the problem 131 we derive a closed formula for the 
asymptotic angular distribution that is valid for all directions. It is the derivation of 
this formula and its use in a discussion of cross sections, the optical theorem, and the 
classical limit, as well as the comparison with wavefunctions obtained from numerical 
calculations, in which this work differs from previous discussions of AB wavcpackct 
scattering 13, 41. 

In section 2 we derive a formula for the function G2:7 (9  I + ) whose physical 
meaning is the following: KO is the average momentum of the incoming Gaussian 
wavepacket and y a parameter that measures its spatial extension. Thc other two 
parameters characterize the scatterer; a is the flux parameter and p is the radius of 
the solenoid. The quantity IG2i7( 'p I + )I2 d'p gives the probability for finding the 
particle in the sector ( ' p , ~  + d q )  if a long time has elapsed since the scattering 
(strictly speaking this distribution is approached in the limit 1 - + w). 

In section 3 we use this formula to discuss the physical meaning of cross sections, 
the optical theorem, and the classical limit. For AB scattering the differential cross 
section derived from TIST is known to diverge in fonvard direction 111 and it has 
been emphasized in [2] that this should lead to experimentally observable differences 
between AB and ordinary potential scattering. Our analysis shows that instead of 
the divergence obtained for a plane wave a peak of finite height is obtained for 
the wavepacket. Also, outside the forward direction the difference between AB and 
pure potential scattering is less marked than assumed in [2]. From the expansion of 
the generalized eigenfunctions in partial waves the optical theorem is usually derived 
as a formal identity; in AB scattering both sides of this equation are of infinite 
magnitude [lo]. We show that this form of the optical theorem can be interpreted 
as a balance equation only in case of pure potential scattering. The correct balance 
equation, formulated in section 3, shows the difference between AB and pure potential 
scattering more clearly: if the radius of the coil tends to zero the fraction of particles 
scattered off  the forward direction remains finite in the AB case whereas it vanishes 
in case of pure potential scattering. We finally show that for increasing momentum of 
the incoming wavepacket (parameter KO) the quantum aspects of the scattering, Le. 
the Fraunhofer and AB interference pattern, become more and more concentrated in 
a narrow sector in forward direction. Outside a sector of $xed width one therefore 
finds in the classical limit (KO i CO) nothing but the smooth intensity as it is obtained 
from the classical reflection at the surface of the cylinder. 

In section 4 examples of angular distributions are given for various flux parameters 
and diameters of the impenetrable solenoid as functions of the variable pplr E 
1-1, +1]. These distributions are compared to the corresponding functions obtained 
from numerical integration of the time-dependent Schrodinger equation. Good 
agreement between analytical and numerical results is found which justifies the 

M Jursa and P KasperkovirZ 



Time-dependent Aharonov-Bohm scattering 1751 

approximations used in section 2 and section 3. 

examples (figures 1 to 5). 
In section 5 we finally summarize our results and the conclusions drawn from the 

2. Asymptotic angular distributions 

We consider wavepackets of the form 

where polar coordinates are used for the two-dimensionsnal vectors (z ++ (R, p), 
k t* ( K ,  4)). In (1) the function 

X, , , (k?)  = Ulmtnl,, (ICR) eimq 
m 

with yet undetermined coefficients C;(C$) and radial functions 

is a generalized eigenfunction of the Hamiltonian 

CK A = --n 2 

R '  
H = : @ - A )  (4) 

(m = I, e/c = 1, ii = 1) subject to the boundary condition ul,t,l,p ( ICp) = 0. 

r lmtal(KP) = arg Hlmt,l(ICP) (r) 

This boundary condition follows from the assumption that the particle is reflected 
at the surface of the cylinder C, = {z I R < p}. This cylinder contains a solenoid 
enclosing a magnetic flux of magnitude 2rra as can be seen from (4). The scatterer is 
therefore characterized by the two parameters Q and p; for cy = p = 0 (1) represents 
a bee wavepacket. Note that the Hankel functions in (3) and (5) are those with 
asymptotic form 

If the weight function in (1) is chosen as 
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the integral (1) can be calculated analytically for CK = p = 0 ([6, p 2231). If 

M Jursa and P Kasperkovitz 

one can use an asymptotic approximation for the modified Bessel functions I, [A, 

to obtain a factorization of the weight function which is more convenient for the 
scattering problem (a # 0 and/or p # 0). 

Fs (xnZ)-'/4 exp [-$($/.)'I for 141 < R (11) 

Inserting (10) and (2) in (1) one then arrives at a double series containing the 
cocilicients 

Because of (8) and the exponential exp{-nZM2/2} contributions of terms with 
IMI B Mu = [I/.] are negligible. (Here and in the following 

2 3 [ z ] = z - E  o < E < l  (13) 

ie. [z]  is the integer part of 2). Let us assume that 

c&,,, = O  for M - m # n ( a )  (14) 

leaving the specification of the integer function n(a)  for later considerations. If this 
condition is satisfied the double series can be approximated by a fmite sum; this fact 
makes it possible to calculate the wavefunction +;&(z;t) at at all positions z that 
are sufficiently far away from the scatterer. 

If thc wavefunction is considered only in regions where I<;R > /Mu - n(cy)I, 
we can use the asymptotic form (6) of the Hankel functions in (1). Although 
this substitution is not justified in the terms with Iml > IMu - n(a)l ,  this does 
not influence the result essentially since these terms can be neglected in any case. 
mending the integration over I C  to the whole real line, which is justified because of 
the sharp peak of (10) at K = IC", we arrive at the asymptotic wavefunction 
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where the two radial functions are given by 

FK0JR't I 
= ( 8 ~ ~ y R ~ ) - ' / ~  /+m dK'exp 

-CO 

- i g t * i ( K R -  2 :)] 

The real part of the exponentials in (16) is -y ( l  + 4y2tz)-'(R 'F IC,t)'; 
accordingly in the distant past (t + -ea) the wavefunction +z17(z;t) is given by 

for t -+ +ea. Both these wavefunctions are asymptotic forms of bee wavepackets, 
the one incoming and contracting in the radial direction (a = -), the other outgoing 
and spreading (a = +). 

FK,,JR, t I - G ~ & ( P I  - ), whereas it approaches FKO,J& t I + ) G~LJP I + 1 

The radial distribution of the incoming wavepacket is given by 

l3 describe a particle that approaches the Scatterer from the negative z-axis the 
function (17) should be centred at ~p = x .  This is achieved by choosing 

c M , M - ~ ( ~ )  = exp{-i(lM - .(a) + at + + Mx)I (18) 

which entails 

(19) , p , P  K o , y ( r p ( - )  = e-in(a)v G a ( q - x ) .  

In the distant past all wavepackets with G>&,(p I - ) given by (19) are localized in 
a narrow sector around 'p = x whose width 1s determined by K. Convention (18) 
therefore guarantees the desired behaviour of the incoming wavepacket no matter 
how the integer n(a) is chosen. The physical meaning of this quantity can be Seen 
from the expectation value of the kinematical angular momentum Ly = - i a / a p + a  
for the incoming wave packet 

(L?) + a - .(a) for t - --CO (20) 

Whereas the initial motion is parallel to the z-axis in all cases the distance of the 
center of the packet from the zaxis varies with n( a); this influences the details of 
the scattering process (1 % 0) and shows up in the asymptotic angular distribution of 
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the scattered wavepacket (t + + 00). lb minimize the distance (L!$)/Ko,  Le. to 
make the collision as central as possible, we set 

M Jursa and P Kasperkwi!z 

n(a) = [a]. (21) 
From this convention follow the relations 

x,tl,,(k;z) =e-@ xo,,(k;+) (22) 

+gz,\p(z;t) = e+ +z&(z; t )  (23) 
whence it is sufficient to study the wavefunctions for 0 < a < 1. 

Because of 

the probability of finding the particle in a sector {pj'p' < p < p"} approaches 
time-independent limits for t .-* i co .  This is the equivalent of the Scattering-into- 
Cones-Theorem of potential scattering in three dimensions [S, 91. At asymptotic 
times (It1 > 1/27) this probability is therefore well approximated by 

While the asymptotic angular distribution of the incoming wave packet is given by 
the square modulus of (19) that of the scattered wavepacket is given by the square 
modulus of the function 

G $ : 7 ( ~  I t ) = - ("'/4x3) '14 e-i[alq 

x C e x p { - i  R'M* - i(IM + t 2rlM+d.I(I(up) - ~ ( p  - x))}. 

(28) 
M 

Equations (23, (19), (11) and gS), constitute the main result of this paper. They 
show how a Gaussian wavepacket, initially moving with uniform velocity along the 
negative x-axis and approaching an inpenetrablc solenoid at the origin, is changed 
by the scattering process. It should be noted that the final angular distribution 
(28) holds for all values of a and all directions. This makes the difference to 
previous treatmentments of the problem [l, 31 where part of the analytical results 
were obtained for special values of cy only and, both in TlST and TDST, different 
techniques were used to obtain the intensity of the scattered wave in forward and 
non-forward directions. Since (28) covers the whole range of directions it is especially 
suited to discuss problems related to the interpretation of cross sections and the optcal 
theorem. 
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3. Cross sections, optical theorem, and classical Limit 

Before showing examples of angular distributions let us indicate how our results are 
related to TIST. The time-independent object of TDST is the scattering operator S 
which transforms, at an arbitrary instant t, a free wavepacket $-(z;t) that coincides 
with an interacting packet +"+'(z;t) at t = -CO, into a free packet ~ ) ~ ( z ; t )  
coinciding with the interacting packet at f = +co. For the asymptotically free 
wavepackets considered here this implies for t + + 00 

For it is easily verified that a wavepacket, which in the distant past is of the form 
FKo,?(R,t  I - ) e-in(a)p G,('~-T) (cf (19)), is transformed under the free evolution 
( a = p = 0 ) i n t o F K ~ , , ( R , t l + ) e - ' " ( ~ ) " G , ( p ) a s t  tends to+m.Thescattering 
amplitude, the central object of ~ S T ,  is related to the operator 9-i (5 91. Restricting 
the discussion to large positive times we have 

t T  - - ,-~I.IV 1, dp'G,(p - 'p') g"'Kap(p') 

with 

Function (33), multiplied with a factor (1 - i ) m ,  is nothing but the scattering 
amplitude as it is derived in TlST from the asymptotic form of the generalized 
eigenfunctions [5, 3, 111 @ere x( I<,n,; z) for R i CO, 0 < 'p < 2 ~ ) .  

Since G,(p) ~3 0 for 1.26 < I'pI < T the probability of finding the particle in a 
certain direction outside the forward sector IpI < 1.26 becomes proportional to the 
square modulus of (30). As (32) shows this function is obtained from the scattering 
amplitude by smoothing with the bell-shaped function (11). As the width of this 
function decreases with increasing diameter of the incoming wavepacket (K, k e d ,  
y -+ 0) the differential cross section of TIST corresponds to the asymptotic angular 
distribution of extended wavepackets. If 7, and hence 6, is so small that g",Kop(p') 
wries withiin the interval 'p - 1.26 < 'p' < p + 1.26 only by a small amount then 

and 
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Up to a factor &f/nK0 the RHS of (35) coincides with the differential cross section 
derived in nsT for a solenoid of radius p [2, 51. In the limit p + 0 this function 
approaches the cross section of AB, since (33) becomes proportional to the series 
representation of the AB scattering amplitude in this limit [2, 5, 31; for 0 < 'p < 27~ 
this series can be summed [ll, 21 which results in the closed expression of AB [l]. 

The proportionality factor that relates the probability dcnsity IG$:T('pl +)Iz 
to the differential cross section results from the different normalization of the two 
quantities; this will be discussed in more detail in the following. Here we want to 
emphasize that this proportionality holds only for IC 1 and and only outside the 
forward sector. Since the function (33) diverges as (sin x & ) / e  for E = I'pI -+ $0 11, 
113 (35) is not d i d  near 'p = 0. From the divergence of the scattering amplitude 
at this point it was concluded that for 0 < & < 1 both the differential cross section 
in the forward direction and the total cmss section diverge [2, 121, as if this were 
a strange physical phenomena. However, these propositions merely show that care 
has to be taken in interpreting results derived in   ST. On the other hand, the 
observable consequences of the singularity of (33) are easily understood within TDST. 
No problems occur in the forward direction for two reasons. (i) It is not the scattering 
amplitude itself that enters in the asymptotic angular distribution but its smoothed 
form (32) which is bounded everywhere. The smoothing is a consequence of the 
spreading of initial momenta (see (l),(lO),(ll)) which is unavoidable for normalizable 
states. (ii) The angular distribution in the forward sector is not only determined by the 
smoothed scattering amplitude (32) but also by the distribution of the free wavepacket 
and the interference of these two functions (see (27),(31)). All that can be concluded 
from the divergence of (33) at 'p = 0 is that high intensities are to be expected near 
the boundaries of the forward sector ('p = 11.2K), especially for d = 1/2. 

The initial data should also be taken into account in the interpretation of the 
total cross section and the optical theorem. Conservation of norm gives 

M Jma and P Kasperkovin 
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The RHs of (37) is obviously positive and vanishes only for a = p = 0; for a scattering 
process both sides are thereforeFitive. Each side is also bounded from above by 
4f2rcz/?ie as follows from I& < 2 and (26). Equation (37) holds for all IC > 0, 
the number of terms that have to be considered being of the order MO = [l/n]. How 
many of these terms contribute essentially to the sums depends on the flux parameter 
& because r l M t a l ( K O p )  -* -n/2 and hence 

Ig$KoP( + 2 (sin a x )  for I M I  + 03 . (38) 

For pure potential scattering (& = 0) the series essentially reduce to finite sums and 
both sides of (37) vanish as IC in the limit K - 0. If both sides are divided by IC before 
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the limit is taken one arrives at the familiar optical theorem which relates the value 
of the scattering amplitude in fonvard direction to the average of its square modulus, 
i.e. to the total cross section uT. For 0 < 6 < 1 the situation is quite different: the 
sums diverge as K-’ and both sides of (37) tend to qsin &T)’ in the limit K + 0. 
In this case division by K prior to the limit K -, 0 results in an optical theorem that 
is formally identical to the usual one [to]; but this equation relates two quantities 
which, being of inlinite magnitude, do not admit any direct physical interpretation. 

In TIST the optical theorem is interpreted as a balance equation: the side 
proportional to the scattering amplitude at position (o = 0 is interpreted as the 
’loss’ of particles in forward direction while the other side, the total cross section 
uT, is considered as ’gain’ of particles in the other directions. ’Ib interpret (37), 
or a limiting form thereof, in this way calls for additional arguments since the 
quantities on both sides are related to the function G>;?q,(y) which, contrary to 
the functions G2$( (o I i ), does not have a probabilistic meanmg. Of course (37) is 
mathematically equivalent to the conservation law (36); but to obtain a true balance 
equation one has to subtract from both sides the quantity 

where the constant c is chosen such that ~ G , ( C K ) ~  is smaller than a given error 
bound (eg c = 1.2). Because of (31) the RHS of the new equation then represents 
the probability of finding the particle finally outside the fonvard sector < CK; 

accordingly the LHs gives the probability that the particle is removed from the forward 
direction by the scattering process. This probability depends on the characteristics of 
both the incoming wavepacket (KO, y) and the scatterer (a, p), and on the definition 
of the fonvard sector (c) .  ’Ib which limit this probability tends in the ‘plane wave 
Limit’ K -f 0 (KO fixed, y -f 0) depends crucially on the flux parameter a. 

For pure potential scattering (& = 0) the scattering amplitude (33) is a continuous 
function. If K is sufficiently small smoothing with G, therefore gives (34). The 
correction term (39) is then of order K’ and adds only a small correction to the 
RHS of (37) which is O ( K ) .  The probability that the’particle is scattered by the 
impenetrable cylinder then becomes K K o u T / f i .  That this probability vanishes in 
the limit K -t 0, whereas uT remains finite, is a result of different normalizations: 
in TIST the total cross section uT is normalized by the flux of the ‘incoming’ plane 
wave; in TDST the wave function is normalized to one whence the probability that the 
incoming particle ‘hits’ the obstacle (/MI < Kup) is equal to 2 I ( u p ~ / f i  for K << 1. 
Because of the short range of the interaction it is therefore legitimate to interpret the 
optical theorem of TIST as balance equation provided that both sides of this equation 
are multiplied with KK,,/&. 

’Ib see what happens in case of non-integer a it is convenient to split the 
asymptotic wavefunction into a pure AB wave function and a remainder 

G~&CPI+) = G2;J(ol+)+ G>&((o). (40) 

Like the function G2&(p) in potential scattering the remainder term in (40) is 
essentially a finite sum that becomes a continuous function proportional to K’/’ if 
K < 1. The pure AB term is given by (28) with F’lM+sl(Kop) = -n/2. For small 
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R the sum may be approximated by an integral which can be evaluated analytically 
([13, p 4511). The result is 

M Jursa and P Knsperkoviu 

G$ET(cpI+)%e-ilo]P ( T K  2 ) -U4 

1 
x exp { -;( 'p/~)'} ((cos & T )  + (sin &T) (-i) erf l ( ' p / r t ) ) .  (41) 

Note that f ( x )  = - i e r f ( i x / a )  = f(z)' = -f(-x) so that G217(0) = 0 for 
& = 1/2. As rt tends to zero, the loss and gain terms for pure AB scattering then 
approach finite values whose magnitude depends only on the def~nition of the forward 
sector: 

Jz 

d'p IG$:7( 'p I + ) I 2  = (m &T)' X( c) + (sin &n)' Y( e) (42) 

X ( c )  = - Jilm dx e-5' = erfcc 
J;; 

2 

Y ( c )  = 2 J;; L m d x e - z 2  (erfhz) 
(43) 

'b obtain (43) from (41) we made use of the relations X ( 0 )  = Y(0) = 1 (see [6, 
p 1231) which are consistent with the normalization of G>oU,ig,,(ql + ). Equation (43) 
shows that for 0 < & < 1 there is always a finite probability of the particle being 
scattered, no matter how the forward sector is defined in detail or how far extended 
the incoming wavepacket is in the beginning. This holds also for a solenoid of finite 
diameter since the remainder term in (41) gives only corrections of order K * / ~  in the 
balance equation. This qualitative difference to short-range potential scattering may 
be attributed to the long range of the electromagnetic interaction which shows up in 
the slow decay of the vector potential (4). 

The limit K + 0 may also be considered as classical limit IC" -+ 00: y fixed, 
provided that this limit is also taken into account in the remainder term G2$('p). 
If the extension of the free wave packet at t = 0 is much larger than the diameter of 
the solenoid, ie if 1/& > p, then the remainder term may be approximated by 

where 

is the 'shadow' contribution and 

1 'p .3T x exp { - 2 i ~ ~ p s i n  - - 1- - icy(Lp - T )  
2 4  
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Figure 1. Asymptotic angular distribution of scat- 
tered wavepackets obtained by analytical appmx- 
imalions (density of probability (27) as function 
of the dimensionless variable v/z3 observation at 
time t -+ ce). Start parameten y = 1.54, KO = 
U), full cumes p = 0.u) (thick mil), 0 Q c1 Q 0.5; 
broken curve p = 0, OL = 0 (free motion). 

-I ..I n . 5  I 

Figure 2 Asymptotic angular distribution of sa t -  
wed  wavepackets obtained by analytical approxi- 
mations. Start parameters y = 1.54, KO = 30; full 
curves p = 0.01 (thin coil), 0 Q c1 < 0.5; broken 
cuwe p = 0, OL = 0 (iree motion). 

is the 'reflection' contribution (0 < p < 2n). Approximation (44) is obtained by 
truncating the series at M = & [ K O p ] ;  the shadow part (45) is then summable while 
the reflection part can be approximated by an integral which is calculated by the 
method of stationary phase (cf [14] for 6 = 0). For large KO both the pure AB 
contribution (41) and the shadow contribution (45) decay rapidly outside narrow 
sectors of order Kc' which contain the forward direction 'p = 0. In the classical 
limit the probability of finding the particle outside a forward sector of &en width 2~ 
is therefore given by the reflection contribution (46), ie 

In (47) uG = 2p is the geometrical cross section and the leading term is nothing 
but the probability that the incoming particle hits the coil. The dependence on the 
magnetic flu is only seen in the forward sector IppI < E ,  where the form of the 
angular distribution depends crucially on 6. But if the limit E -+ 0 is performed after 
the limit KO -+ CO the simple geometrical picture of classical scattering (specular 
reflection at the surface of the cylinder) is obtained independently of the enclosed 
magnetic flux 
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4. Examples 

Using the well-known properties of the Hankel functions the asymptotic angular 
distribution IC$&(pl +)Iz was calculated explicitly for y = 1.54, KO = 10, 30 and 
p = 0.01, 0.20. The corresponding values of K are 0.18 and 0.06; although the 
first one does not satisfy the well condition n g 1, which was used in the derivation 
of (29), this example was included for comparison with the corresponding numerical 
solution of the time-dependent Schrodinger equation 

The angular distributions obtained from the wavefunction (29) are shown in 
figures 1 to 3. 'Ib check these results we also calculated the angular distribution 
for wavefunctions obtained from numerical integration of the Schrodinger equation. 
The numerical scheme, as well as results obtained for solenoids of mite length, 
will be presented elsewhere; here we list only the differences between the numerical 
calculation and the analytical treatment of section 2 (i) In the numerical calculation 
the initial wavefunction was chosen to be a Gaussian wavepacket, centred at 
z = -Ron, and having a central wave vector IC,, = Konz + Kl(a)n , .  The value 
of IC,(a)  = -or/% was determined from the condition (E?)  = 0 (cf section 2). 
Such a wavepacket can be expressed in the form (1) if a Gaussian centred at It, 
is used for the weight function and a plane wave for the generalized eigenfunction. 
The wavefunctions used in the two treatments are therefore not identical, but very 
similar to each other since Ku and y have the same meaning and (ep) is very 
small in both cases (central collisions). (ii) The evolution of the initial wavepacket 
was followed until the radial peak of the outgoing scattered wave packet reached the 
circle R = 3%. The radial distribution calculated for this wavefunction according 
to (27) is shown as full curve in figures 4 and 5; dashed curves show the radial 
distribution of the scattered wavepacket at earlier instants (R = Ro). These curves 
were included to show how these distributions change in time since the asymptotic 
region was not reached in the numerical calculations. In the numerical calculations 
the obsenation times were of order 3R,,/1C0, which means t % 0.9 for KO = 10 and 
1 zs 0.3 for IC,, = 30, at these times the asymptotic form of the wave functions is not 
yet reached because (15) can be expected to hold only for times much larger than 
1/27 zs 0.2. 

Figure 3. Asymptotic angular distribution of scattered wavepackets obtained by analytical 
approximations. Stari parameters -( = 1.54, KO = 10; full culyes p = 0.01 and 0.20, 
01 = 0.0 and 0.5; broken curve p = 0, 01 = 0 (tree motion). 
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Flgtlre 4 Angular distribution of scattered wavepackets obtained @ numerical 
calculations, observation at lime t (density of probability (27) as fundon of the 
dimensionless variable t finite). Sian parameters y = 1.54, KO = 30; mil 
radii p = 0.01 and 0.20; flux parameters LY = 0.0 and 0.5. Full curve t = 0.3; broken 
CUNe t = 0.1 

Figure 5. Angular distribution of Scattered wave packets obtained ky numerical 
calculations, observation at time t .  Start parameters y = 1.54, h'o = 10; mil radii 
p = 0.01 and 0.u); flux parameters LY = 0.0 and 0.5. Full curve t = 0.9; broken cume 
t = 0.3 . 

The differences in the initial data and the instant of the h a 1  observation 
considered agreement between the analytical and the numerical angular distributions 
is satisfactory. In any case the following conclusions can be drawn from both 
calculations: (i) Outside the forward sector lip( < 1.2~ , ie outside those directions 
where the particle would be found if there were no scattering, the angular distribution 
does not change very much if the magnetic flux is varied. Only for vely thin 
coils (p  = 0.01) and flux parameters near 6 = 0.5 the probability of finding the 
particle near (but still outside) the forward sector becomes markedly larger. This 
increase of the intensity near the forward direction is related to the divergence of 
the AB scattering amplitude at 9 = 0; however, the obsemable consequences of this 
divergence are much less pronounced than conjectured hy Ruisenaars [2]. (ii) Within 
the forward sector the intensity varies continuously with the flux parameter. As d is 
increased &om 0 to 0.5 the maxima and minima of pure potential scattering (6 = 0) 
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are continuously shifted and deformed. In this variation one of the two minima 
adjacent to the central peak of potential scattering becomes the central minimum 
for 6 = 0.5; its neighbouring maxima originate from the central and the first side 
maximum of potential scattering, respectively. In the height and location of maxima 
and minima the AB interference effect is clearly visible within the forward sector. 
Studying the properties of the generalized eigenfunction x(Kun, ; z )  in forward 
direction (z = R ns + y n,,, R + 00) Olariu and Popescu [3] predicted a Fraunhofer- 
like strip pattern in this region. In a superposition of many eigenfunctions, needed for 
the formation of a wavepacket, these fluctuations obviously cancel each other, except 
for the peaks nearest to 'p = 0 which are essentially the same for all wavelengths. 

The transition from ICu = 10 to hru = 30 with y, p ,  and 01 fixed, may be 
considered as a first step towards the plane wave or the classical limit. The curves 
are seen to change in a way that is to be expected from the discussion of these limits 
in section 3. 

5. Conclusion 

In this paper the scattering of charged particles by an impcnetrable solenoid of 
infinite length and finite diameter is reconsidered. Whereas most of the previous 
treatments [l, 5, 11, 121 used time-independent scattering theory ~ I S T )  to discuss 
this problem we use time-dependent scattering theory ("ST). Using various analytical 
approximations we obtain, for wavepackets that look like free Gaussian wavepackets 
in the distant past (t - -m), the form of the wavefunctions long after the scattering 
(t + fm). From this the asymptotic angular distribution, i.e. the time-independent 
probability of finding the particle within a given sector 'p' < p < p", is derived. 
The probability density of this distribution is obtained in form of a series (see (27) 
and (28)) which is valid for all angles 'p. It therefore includes both scattering off the 
coil and the Aharonov-Bohm-Fraunhofer interference pattern behind the coil. This 
is in contrast to previous studies of AB wavepacket scattering [3, 41 where different 
techniques were used to obtain the angular distribution in these two regions. 

In section 3 equations (27) and (28) are used to discuss the physical meaning 
of the total cross section and the optical theorem. It is shown that the divergences 
found for non-integer flux in TIST [2, 10, 121 must not be taken as observable effects. 
These apparent paradoxes are resolved and a consistent description of the qualitative 
difference between AB and pure potential scattering is obtained if TDST is used instead 
of TIST. Also the classical limit is easily understood within this framework if KU, the 
average momentum of the incoming packet, is increased, while aU other parameters 
of the problem are kept fixed, the sector behind the coil where the Aharonov-Bohm- 
Fraunhofer interference pattern is seen becomes more and more MITOW. In the limit 
ICu 4 00 all quantum aspects of the scattering, including the magnetic AB effect, arc 
concentrated in the forward direction while for all other directions the intensity of 
the scattered packet may be attributed to specular reflections at the surface of the 
solenoid. 

In section 4 we finally compute explicitly for various sets of parameters the 
asymptotic angular distribution obtained in section 2 by analytical approximations 
and compare these distributions with the corresponding ones obtained by numerical 
integration of the time-dependent Schradinger equation. From these functions, 
displayed in figures 1-5, the following can be concluded: if the solenoid is looked 
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at from a certain direction the probability of finding the particle after the scattering 
varies continuously with the enclosed flux. The effect of this variation is most clearly 
seen in the forward direction where the minima are shifted and the maxima deformed 
(see especially figures 1 and 2). Outside the forward direction the action of trapped 
fluxes is less pronounced and can be observed for very thin solenoids only. 
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